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Abstract. We investigate chiral symmetry breaking and color symmetry breaking in QCD. The effective po-
tential of the corresponding scalar condensates is discussed in the presence of non-perturbative contributions
from the semiclassical one-instanton sector. We concentrate on a color singlet scalar background which can
describe chiral condensation, as well as a color octet scalar background which can generate mass for the glu-
ons. Whereas a non-vanishing singlet chiral field is favored by the instantons, we have found no indication
for a preference of color octet backgrounds.

1 Introduction

Instantons, being pseudo-particles associated with tunnel-
ing processes, generate genuine non-perturbative effects in
QCD. In the seminal work of ’t Hooft [1, 2] it was real-
ized that they mediate an effective interaction between
(light) quarks [1–9]. This “instanton interaction” is attrac-
tive in the color singlet channel; hence, instantons pre-
sumably play a role in the mechanism of chiral symmetry
breaking [10–12]. In addition, they also provide for an in-
teraction in color octet channels or in color triplet and
sextet “diquark” channels. Mean-field computations based
on a point-like instanton interaction have been employed
as a central tool for investigations of color superconduc-
tivity at high baryon density [13–17], or for a description
of the baryon and meson spectrum and interactions in the
vacuum in a Higgs picture with spontaneous color sym-
metry breaking [8, 18, 19]. This phenomenologically quite
successful scenario requires a quark–anti-quark condensate
in the color octet channel, giving rise to the question as
to whether instantons support quark condensation in this
channel.
Symmetry breaking by a condensation phenomenon re-

quires an interaction that lowers the free energy if conden-
sates are formed. The bosonic condensates can be quark
bilinears or even higher-order composites. In the case of in-
stantons, a rich interaction structure is indeed provided:
for Nf light quarks, instantons typically induce an inter-
action between 2Nf quark fields, which can be paired in
many ways. This is one of the reasons why instanton-
induced multi-fermion interactions have often been used
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as a starting point for investigations in the mean-field ap-
proximation. However, in the approximation of a point-like
multi-fermion interaction, mean-field theory is ambigu-
ous: by means of a Fierz transformation, the quarks can
be grouped in different ways. For example, products in-
volving color non-singlet Lorentz scalars can be exchanged
by products of color singlets in vector or tensor repre-
sentations of the Lorentz group and vice versa. In view
of this ambiguity, the relative strength between color
octet and singlet channels remains undetermined, since
the color octet channels can be completely removed or en-
hanced by suitable re-orderings [20]. Similar problems arise
for the other colored channels used in the high-density
computations.
For further progress towards reliable computations, the

Fierz ambiguity of the mean-field computation has to be
resolved. This can be done in different ways. A first pos-
sibility explicitly includes the fluctuations of composite
bosons after partial bosonization. Then, the dependence
on the particular choice of bosonization (Fierz ambiguity)
gets substantially reduced, as demonstrated by functional
renormalization group techniques [21]. A second approach
attempts to resolve the ambiguity by explicitly taking the
momentum dependence of the instanton-induced vertex
into account. Finally, we propose a third method in this
article that avoids altogether the use of the multi-fermion
vertex and rather computes directly the instanton contri-
bution to the free energy in the presence of selected con-
densates. The various approaches have different strengths
and shortcomings, and a reliable picture will probably only
emerge by a combination of them.
The advantage of a study of the momentum depen-

dence of the instanton-induced vertex is based on the
observation that pole-like structures which arise from the
effective exchange of quark–anti-quark or quark–quark
bound states can be associated to the given channel of
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the bound state. In contrast to a point-like interaction,
such pole structures can no longer be moved to another
channel by Fierz reordering. Momentum-dependent ver-
tex functions can be dealt with using functional methods,
such as Dyson–Schwinger equations, NPI effective actions,
functional renormalization group (RG) or suitable com-
binations. In particular, we envisage the functional RG
as a promising approach towards a quantitative study
for the condensation phenomena at hand, for reviews
see [22–25]. The computation of the flow equations in-
volves only a narrow momentum range around a given
renormalization scale k, thus reducing the impact of an
incomplete knowledge of the detailed momentum depen-
dence of the full propagators and vertices; see, e.g., [25–29].
Its application to the present problem requires an imple-
mentation for the non-perturbative sector of gauge theo-
ries, see e.g. [22, 26–28, 30–32], also employing bosoniza-
tion techniques as developed in [21, 25, 33–35], or NPI- and
NPPI-flows as discussed in [24, 25, 36, 37]. In particular,
the Fierz-type ambiguity of the present problem can be re-
solved within a 2PPI-effective-action approach, since all
possible (local) fermionic pairings are effectively taken into
account by this approach [20].
In this work, we consider a more direct approach to

instanton-induced color symmetry breaking by taking ad-
vantage of the following observation: possible condensates
can be viewed as background fields that are coupled to
quarks and gluons via Yukawa and gauge interactions. We
concentrate here on scalar color singlet and octet conden-
sates. In the presence of a singlet condensate, all three
light quarks become massive, thus influencing the weight
of the fermion determinant in the instanton calculation.
Additional octet condensates induce a mass split between
an octet of fermions (here associated with the baryon
octet) and a singlet. Furthermore, all gluons acquire mass
through the Higgs mechanism. Both effects modify the
instanton contribution to the free energy. In particular,
the effective condensate-dependent gluon mass acts as an
effective infrared cutoff, strongly suppressing the contri-
bution of instantons of size larger than the inverse gluon
mass. Furthermore, the infrared cutoff stops the running of
the gauge coupling such that the gauge coupling remains
small for sufficiently large octet condensates, and pertur-
bation theory becomes applicable. By computing the in-
stanton contribution to the free energy in presence of the
condensates, we get access to those parts of the effective
potential that violate the axial U(1)A symmetry. Under
the hypothesis that these parts dominate the octet depen-
dence of the potential, we may try to draw conclusions if
the minimum occurs for vanishing or non-vanishing octet
condensate. Our computation of this response is based
on two theoretical concepts: on the one hand, the full
functional integral is evaluated in the semiclassical one-
instanton approximation. On the other hand, the decou-
pling of massive modes is taken care of by a proper thresh-
old behavior of the running coupling, as it is suggested by
the functional RG.
Our method needs assumptions how the non-vanishing

singlet and octet condensates influence the masses of
quarks and gluons. In practice, this is done by an ansatz

for the effective action which describes the couplings of
quarks and gluons to the color singlet and octet conden-
sates. Apart from the restrictions imposed by color and
flavor symmetry, the details of this effective action are not
known. This is one of the most severe restrictions on the
quantitative reliability of our computation. Nevertheless,
the qualitative features of mass generation for quarks and
gluons can be captured in a simple picture. We consider
here a local interaction with low powers of the condensates,
in particular the chiral color singlet scalar σab with flavor
indices a, b, . . . and the color octet scalar χab,ij with non-
trivial structure for flavor and color (i, j, . . . ). Our ansatz
for the interactions between the condensate fields, quarks
and gluons can be summarized in the following Euclidean
effective Lagrangian [19],

L= iZψψ̄iD/ ijψj+
1

2
Fµνij Fji,µν

+Zχtr
{
(Dµχ)†ij(D

µχ)ij
}
+Zσtr{∂

µσ†∂µσ}

− iZψψ̄i

[(
hσδij+ h̃χij

)1+γ5

2

+
(
hσ†δij+ h̃χ

†
ji

)1−γ5

2

]
ψj

+U0(σ, χ) . (1)

Here, we have included all power-counting relevant and
marginal interaction operators as well as an effective po-
tential for the background fields for completeness. In (1),
we treat σ and χij as 3× 3 matrices in flavor space and
contract over the flavor indices of the quarks. A successful
phenomenology of QCD based on an effective Lagrangian
of this form has been worked out in [18, 19, 39].
Obviously, the reliability of our conclusions will de-

pend on whether the ansatz (1) gives a qualitatively cor-
rect picture for the response to non-vanishing condensates.
We therefore present a few additional arguments for its
motivation. Associating the condensates σ, χ with cor-
responding fermion composites ∼ ψ̄ψ, the interactions of
the type specified in (1) arise naturally from fundamen-
tal QCD, as can be studied with techniques developed
in [21, 33–35, 37]. In particular, box diagrams of the type
shown in Fig. 1 play an important role. In this work, we
choose the viewpoint that these effective interactions are
present in the dominant momentum region for the instan-
ton contribution, being generated by U(1)A-preserving in-
teractions, also partly at higher momentum scales. We do
not attempt here to compute the parameters appearing in
the effective action (1) except for the gauge coupling. For
a qualitative study, we treat the Yukawa couplings h, h̃ as
well as the wave function renormalization factors Zψ, Zσ,
Zχ as free parameters.
In the presence of non-vanishing background fields σ,

chiral symmetry is broken, whereas χ acts like the Higgs
scalar, giving masses to gluons and quarks. For the present
purpose, it suffices to investigate in detail the following two
directions in field space:

σab = σδab , χab,ij =
1
√
6
χ

(
δiaδjb−

1

3
δijδab

)
. (2)
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Fig. 1. Box diagrams with fundamental QCD interactions (left two diagrams) generate effective (non-local) four fermion interac-
tions (middle). Using rebosonization [33] these can be translated to (approximately local) Yukawa interactions interactions with
propagating composite bosons (right)

These configurations correspond to the condensates of
standard chiral symmetry breaking and a color–flavor
locked [38] combination of quarks and anti-quarks, respec-
tively. In this background, all fermions aquire mass,

M1 = hσ+
8

3
√
6
h̃χ , M8 = hσ−

1

3
√
6
h̃χ , (3)

with a split between the octet mass M8 and the singlet
massM1 for χ �= 0. The fermion determinant in the instan-
ton contribution depends only onM8 andM1. We use the
freedom of scaling of the fields σ and χ to set h = h̃ = 1.
In this normalization, σ and χ are directly related to the
masses. In the Higgs picture of the QCD vacuum, the
expectation value for M8 should be associated with the
mass of the lowest baryon octet and M1 with a baryon
singlet, possibly Λ(1405), yielding [40] M8 = 1.15GeV,
M1 = −1.4GeV or σ0 = 866MeV, χ0 = −2.08GeV. In our
approach, we treat σ and χ as free variables. The octet
condensate in (3) provides for an equal mass for all eight
gluons,

Mg = Z
1/2
χ g|χ| . (4)

Here, g is the renormalized coupling taken at an appropri-
ate scale. The χ dependence of g will be discussed in detail
below. Then Zχ remains the only undetermined parameter
of our ansatz. The phenomenological ansatz of [19, 40] as-
sociates Mg with the average mass of the lowest spin-one

meson octet,Mg � 850MeV and suggests Z
1/2
χ � 1/15.

The paper is organized as follows. In Sect. 2, we dis-
cuss the various effects of the quark and gluon masses on
the instanton integral. In the subsequent section, Sect. 3,
we discuss the asymptotic behavior of the instanton contri-
bution to the free energy. In Sect. 4, we investigate which
condensate backgrounds are preferred by the instantons.
Our conclusions are presented in Sect. 5.

2 Effective potential
in one-instanton approximation

Consider a given background of scalar fields σ and χ, as
introduced above. Our aim is to compute the instanton
contribution to the effective potential for σ and χ in the
presence of fluctuating quarks and gluons. For homoge-
neous σ and χ, the effective action Γ thus decomposes

into

Γ [σ, χ]≡ΩU(σ, χ)

=Ω(U0(σ, χ)+Uinst(σ, χ)+U
∗
inst(σ, χ)) , (5)

where Ω denotes the spacetime volume. The non-anomal-
ous contribution U0(σ, χ) conserves the axial U(1)A sym-
metry and will not be computed here. The anomalous
contribution Uinst is induced by configurations with non-
trivial topology, mediating also U(1)A violation [41]. We
determine this part in a semiclassical approximation based
on instanton methods. In particular, we resort to the ap-
proximation of a gas of dilute instantons in which Uinst can
be expressed by an integral over the instanton size ρ and
the product of gluonic (ghosts included) and fermionic fluc-
tuation determinants in a one-instanton background (see
Appendix A),

Uinst =−
1

Ω

∫ ∞

0

dρ exp(−8π2/g2(ρ))∆gl(χ, ρ) detMψ,ij .

(6)

Here, the exponential factor reflects the classical action of
the instanton, and ∆gl summarizes the contributions from
gluons and ghosts in the instanton background. The last
factor, with

Mψ,ij =−D/ ij+σδij+χij , (7)

represents the fermion determinant which is of central in-
terest to our work. In particular, it contains the zero modes
of the Dirac operator which are responsible for anomalous
contributions and give rise to a strong σ and χ dependence
even for small values of these fields.
It is useful to decompose (6) into a factor ζz(σ, χ, ρ)

arising from the fermionic zero modes, and another non-
zero-mode factor ζn(σ, χ, ρ) that summarizes all remaining
(classical, gluonic, fermionic) contributions:

Uinst(σ, χ) =−

∫
dρζn(σ, χ, ρ)ζz(σ, χ, ρ) . (8)

All contributions have been studied frequently in the lit-
erature, beginning with the seminal work of ’t Hooft [1, 2].
As important new aspects, we include the color octet scalar
and take the threshold behavior due to decoupling of mas-
sive modes into account.
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2.1 Lowest order in the background fields

Assuming that σ and χ are small compared to all other
scales, their main influence arises from the zero-mode con-
tribution. In particular, the non-zero-mode factor ζn does
not depend on the scalar fields to lowest order. For an
SU(Nc) gauge theory with Nf flavors, ζn reads

1 [1, 2]

ζn(ρ) =DSρ
−5

(
8π2

g2(ρ)

)2Nc
exp

(
−
8π2

g2(ρ)

)
. (9)

Here, DS is a scheme-dependent constant. A discussion
of the scheme dependence including the difference be-
tween massive and massless regularization schemes can
be found in Appendix B. Our scheme has been moti-
vated by the functional RG which generically provides for
mass-dependent schemes that automatically account for
a proper decoupling of massive modes. This is a convenient
feature of our RG-inspired scheme; however, we observe
no qualitative scheme dependencies of our results. For ex-
ample, to zeroth order in the fields, DS in our RG regular-
ization scheme is given by (see [41, 43, 44] and Appendix C)

DRG =DMS =
2 exp

(
5
6 − ig)

π2(Nc−1)!(Nc−2)!

× exp(−1.51137Nc+0.29175Nf)

= 6.005×10−3, (10)

where the last equality holds for Nc =Nf = 3.
As discussed in the Appendices B and C, our RG

scheme is constructed such that it matches the MS scheme
in the small mass limit. It was demonstrated in [45] that
the MS scheme gives satisfactory agreement with lattice
data in the ultraviolet. Without a color–flavormixing mass
matrix (χ = 0), the eigenmodes of D/ are also eigenmodes
ofMψ and we are led to [1, 2, 7]

ζz(ρ, σ, χ) = 〈det flavor〈ψ0(a, i)|Mψ,ij |ψ0(b, j)〉〉SU(3)

=:−ρNfV (σ, χ) , (11)

where the inner angled brackets denote the scalar prod-
uct of the zero modes ψ0, and the outer angled brackets
denote a group average over all possible directions for the
instanton in color space. In the last step, we have separated
off the simple ρ dependence ∼ ρNf and defined the auxil-
iary potential V (σ, χ). We have also used the persistence
of (quasi-) zero modes in the presence of the regulariza-
tion [7]. For χ �= 0, D/ andMψ do not commute in general,
e.g. for condensates χ with (2). The eigenmodes of D/ and
Mψ do not agree anymore for χ �= 0. Therefore, strictly
speaking, (11) does not hold in general. However, in lead-
ing order of an expansion in χ and σ it holds true, as shown
in Appendix D. Inserting these findings into (8), we obtain

Uinst(σ, χ) = V (σ, χ)

∫
dρρNfζn(ρ) =: ζV (σ, χ) . (12)

1 In Appendix C, we briefly review the contributions from
the zero and the non-zero modes starting from results given
in [1, 2, 42]. Moreover, we use this appendix to introduce our
regularization scheme.

For Nf < 4, ζ is a finite number for physically admissible
running couplings from the UV to the IR as discussed in
Appendix E. For small σ and χ, the potential V (σ, χ) car-
ries all dependence on the scalar condensates.
So far our discussion has made no use of a specific color

or flavor structure for the background fields. Let us now
specialize to the condensates specified in (2). Using the
gauge-group averages computed in [3] we find (see Ap-
pendix D for details)

V (σ, χ) =−σ3+
1

72
σχ2+

1

648
√
6
χ3

=−

(
σ+

1

6
√
6
χ

)2(
σ−

1

3
√
6
χ

)
. (13)

In this crude approximation where U(σ, χ) = ζV (σ, χ)
with ζ being a field-independent constant, we observe two
flat directions, σ = − 1

6
√
6
χ and σ = 1

3
√
6
χ, but no global

minimum. In fact, V (σ, χ) is unbounded from below, simi-
lar to the findings in [20]. In the present case, this simply
signals the breakdown of the approximation of small σ
and χ.
Let us assume for a moment that the potential be-

comes stable beyond this approximation or by the inclu-
sion of U0(σ, χ) (cf. (5)). Then one might speculate that
the first flat direction, σ =− 1

6
√
6
χ, which is a line of local

minima for σ < 0, characterizes a global minimum (the
second flat direction is not even a local minimum). How-
ever, in this case, the ratio r =

∣
∣σ
χ

∣
∣ = 1

6
√
6
≈ 0.068 is far

from the phenomenologically reasonable range r∼ 0.4 [40].
Since V is completely determined by the zero modes of
the massless Dirac operator, this flat direction will not
be lifted by the inclusion of higher order corrections in
the bosonic fields in the one-instanton approximation, as
long as the split into zero- and non-zero-mode parts re-
mains justified. A similar flat direction was also found
in [20].
Let us furthermore assume that, for instance, U0 in-

duces a non-zero VEV for σ. Since V (σ, χ) prefers a pos-
itive σ, the resulting potential V (σ, χ) in the χ direction
looks like the solid line sketched in Fig. 2. The case of no
color octet condensate, χ = 0, then is a local minimum.
For larger χ, the higher-order corrections from the non-
zero-mode contribution and the threshold effects will set
in, stabilizing the potential in the χ direction. Now it is
a dynamical question as to whether this stabilization sets
in early, i.e., for rather small χ, such that no other mini-
mum is induced (dotted line). Or stabilization could only
modify the region of large χ (dashed) line, such that the
χ3 term of (13) wins out in between, and induce a color
octet condensate.
The second scenario of color octet condensate forma-

tion seems more difficult to be realized, since the ∼ σ3

term and the ∼ σχ2 one are of opposite sign and the co-
efficient of the χ3 term is rather small. Unfortunately, the
small coefficients in front of σχ2 and χ3 in the poten-
tial (13) will limit even the qualitative reliability of our
investigation. As an effect of the color averaging, the po-
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Fig. 2. Schematic plot of V (σ, χ) at fixed σ > 0. Without
higher-order corrections, the potential is unbounded from be-
low (solid line) with a local minimum at χ= 0. If the cutoff
mechanism provided by the higher-order corrections is strong
(dotted line) the global minimum remains at χ= 0. However, if
the suppression sets in only at rather large values of χ (dashed
line) we have a global minimum at χ �= 0 in addition to a local
one at χ= 0

tential in the χ direction is almost flat for a given value
of σ, in contrast to the pronounced potential in the σ di-
rection. For a given σ, the weak dependence of V on the
“direction” χ/σ could easily be overwhelmed by correc-
tions in higher orders in σ and χ that are much more
difficult to control. Despite this caveat, a quantitative an-
alysis remains interesting and will be presented in the next
sections.
Let us close this lowest-order consideration with the re-

mark that σ and χ, in general, are complex fields. However,
complex field values typically lead to large CP violation,
making them phenomenologically unacceptable; this is the
reason why we restricted our analysis to real field values.
If a non-trivial phase between the octet and singlet con-
densates is favored in case of non-vanishing |χ|, this may
lead to an argument against the formation of color octet
condensates in general. In order to demonstrate this point
we assume for a moment that the effective potential for
the relative phase between χ and σ is dominated by the
small field instanton contributionU ≈ ζV (σ, χ). Then, real
positive values of σ would be preferred due to the instan-
ton contribution. This would in turn lead to a positive
“mass term” ∼ χ2 (cf. Fig. 5b), originating from the σχ2

term in (13); for imaginary χ= i|χ|,this turns into −σ|χ|2.
Combining this with the small χ3 term, the relative min-
imum of V (σ, χ) for fixed σ > 0, |χ| > 0 would occur for
a complex CP violating χ. Unfortunately, the impact of
this observation is weakened by the very small coefficients
of the σχ2 and χ3 terms arising in our approximation. The
approximate flatness in the χ direction makes the poten-
tial influence of the other effects large. In this context we
observe that the U(1)A-conserving part U0 in (5) also con-
tributes to the effective potential for the phase between
χ and σ, for example with terms ∼ σ∗2χ2+c.c. Only the
common phase of χ and σ is protected by the U(1)A-
symmetry and is uniquely determined by the instanton
part.

2.2 Beyond small condensates

As demonstrated in the preceding section, the instanton-
induced effective potential can, in principle, support
a mechanism for spontaneous color octet condensation.
Whether or not this mechanism is realized, however, re-
quires a study that is valid for larger values of σ and χ.
The consequences of large condensates are twofold. First,
the fermion masses are no longer small. This affects the
non-zero-mode contribution ζn as well as the running of
the gauge coupling. Also a mixing between zero modes and
non-zeromodes is induced. Second, a color non-singlet field
gives an effective mass to the gauge fields, which again
modifies the running of the gauge coupling (now the pure
gauge contribution). In addition, it provides for an effective
infrared cutoff for the ρ integration.

2.2.1 Effects on the running gauge coupling

Fermion and effective gauge boson masses exert an imme-
diate influence on the running of the gauge coupling. For
momenta smaller than the mass of a given quark or gluon
degree of freedom, the corresponding fluctuations of this
degree of freedom are suppressed. As a consequence, these
fluctuations do no longer contribute to the running of the
coupling. This decoupling of massive modes can directly be
implemented in the β function for the running coupling,
which we write as

∂tg
2 ≡ k

d

dk
g2

=−
1

8π2
g4
(
11

3
Nclg

(
M2g

k2

)
−
2

3
Nflf

(
|M8|2

k2

))
,

t≡ ln
k

Λ
, (14)

where Mg and M8 are the gluon and the octet masses
given in (3) and (4), and k denotes an RG momentum
scale. The threshold functions lg,f (x) approach unity for
small argument, lg,f (0) = 1, corresponding to the fact that
the physical or effective masses play no role in the UV
limit k→∞. For large argument, i.e., for momentum scales
k below a given mass, the threshold functions drop to
zero rapidly, lg,f (x� 1)→ 0, which implements the decou-
pling of massive modes from the renormalization flow. The
threshold functions are not universal but regularization
scheme dependent. For generic mass-dependent schemes,
the threshold functions interpolate smoothly between the
two limits.2 For the explicit computations, we set the
threshold functions equal, lg(x) = lf (x) = l(x), and use

l(x) =
1

(1+x)3
. (15)

2 For mass-independent schemes such as the MS scheme,
threshold functions do not appear directly; but in order to
describe the physics above and below a mass threshold ade-
quately, theories with a correspondingly different particle con-
tent have to be matched at the mass threshold. This can equally
be described by an effective threshold function which changes
its slope discontinuously at a mass threshold.
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This is a typical form for a threshold function, occurring
in calculations based on the functional RG. Of course,
the one-loop form used in (14) only serves as an example.
A similar analysis of mass threshold behavior applies to
any loop order and even fully non-perturbatively. We
would like to stress that it is this threshold behavior where
the additional free parameter Zχ enters viaMg; cf. (4).
As a result of this decoupling mechanism, the effect-

ive running coupling is now field dependent, g(k, σ, χ).
Inserting this into (9) and (12) results in an additional
field dependence of the effective potential. Qualitatively,
the gauge boson mass weakens the increase of the gauge
coupling. Owing to the exponential of the classical action
∼ exp(−8π2/g2) in (9), this leads to a total suppression
of the instanton contribution. The fermion threshold be-
havior has the opposite effect due to the minus sign in the
β function, reflecting their charge-screening nature.

2.2.2 Effect on the instanton determinant

The condensates give masses to fermions and gluons; hence
the corresponding fluctuation determinants have to be
evaluated for this massive case. Let us first consider the
massive fermion determinant, i.e., the non-vanishing shift
of the fermionic (non-zero) eigenmodes due to the effective
fermion mass (3). This problem has been solved recently
using an efficient method to perform the mode sum [46,
47]. The result interpolates smoothly between the ana-
lytically known small- and large-mass expansions [48, 49].
These calculations have been performed with a color sing-
let quark mass m in the MS scheme. Here, we neglect the
difference in the effect of the singlet and octet quark mass
and approximate

m=
1

3

√
|M1|2+8|M8|2 . (16)

For our purposes, we have to adapt the results of [46, 47, 49]
to our massive RG regularization scheme, as derived in Ap-
pendix C, and use the following interpolating function:

NfK(x) := ln det
′(−D/ +m)|RG

=−
2

3
Nf

(
H(x)+

3

4

)
+lndet ′(−D/ +m)|MS

�Nf

[
− ln(x)−a1+

ln(x)+a1−a2x2−a3x4

1+a4x2+a5x4+a6x6

]
,

(17)

with x= ρm. The functionH(x) is defined in (C.9), and

a1 = 0.792 , a2 = 3.58 , a3 = 0.0842 ,

a4 = 0.00115 , a5 = 23.5 , a6 = 9.28 .

The primed determinant det ′ in (17) is for the space of
non-zero modes. As shown in Fig. 3, this function interpo-
lates smoothly between the small- and large-mass regimes.
A similar behavior as for the fermion determinant is

expected for the non-vanishing gluon mass in the gluon
determinant. However, this effect is sub-leading, the dom-
inant effect being the modification of the classical action
at the minimum, see e.g. [1, 2, 7]: for constant χ, this gives

Fig. 3. The solid line gives the interpolating function K(x),
smoothly connecting the small mass (dashed) and the large
mass approximations [46, 47, 49]

a contribution to the classical action∆Scl =−6π2Zχ|χ|2ρ2

and therefore a factor of (cf. (6))

exp(−8π2/g2(ρ))∆gl(χ, ρ)

→ exp(−8π2/g2(ρ)−6π2Zχ|χ|
2ρ2)∆gl(ρ) (18)

in the integral (12). To summarize, the full inclusion of σ
and χ in the fermion determinant and the Higgs-type of
contribution to the classical action result in our final for-
mula for the effective potential (Nc =Nf = 3):

Uinst =DRGV (σ, χ)

∫
dρρ−2

(
8π2

g2(ρ)

)6

× exp

(
−
8π2

g2(ρ)
−6π2Zχ|χ|

2ρ2+3K(mρ)

)
,

(19)

whereK is given in (17), and DRG is defined in (10). Once
the running of the gauge coupling is specified, e.g., using
the one-loop form of (14) and identifying the RG scale
with the inverse instanton radius, k = 1/ρ, we can investi-
gate the landscape of the instanton-induced contribution
to the effective potential for σ and χ. For fixed σ, an ad-
ditional χ dependence arises from the explicit term ∼ |χ|2

in the “classical part”, the dependence of g(ρ) on χ and
the threshold effect K(mρ). Our approximation of K(mρ)
reflects probably only poorly the dependence on the ratio
χ/σ, and we have also neglected the mixing between the
fermionic zero modes and non-zero modes which would
modify V (σ, χ).

3 Asymptotic behavior
of the effective potential

In order to obtain a more analytic understanding of the ef-
fective potential Uinst, let us investigate its asymptotic be-
havior for the different regimes of small and large fields σ
and χ. Of particular interest is the interplay between this
asymptotic behavior and the running of the gauge coupling.
As an important caveat , it should be kept in mind that our
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derivation of the effective potential is based on the semi-
classical instanton-gas approximation. This approximation
implicitly assumes that the one-instanton contribution is
small, which translates into a small value of Uinst. There-
fore, whenever a large asymptotic behavior of Uinst is en-
countered, this may not necessarily reflect the true behav-
ior but rather signal the breakdown of the instanton-gas
approximation.
Our derivation of (19) so far made use of the specific one-
loop running of the gauge coupling given in (14). Assum-
ing that the functional dependence on the running coupling
holds also in the general case,we use the formof (19) also for
other theoretically or phenomenologically motivated run-
ning gauge couplings. For definiteness, we will use gauge
couplingswith the following infrared (ρ→∞) properties:

g2(ρ)|ρ→∞

∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

const, fixed point,
| ln(ρ)|plog , logarithmic divergence,
ρppower , power law divergence,

g2pert(ρ)Θ
(
ΛQCD−

1
ρ

)
perturbative,

+Θ
(
1
ρ
−ΛQCD

)
∞,

(20)

with positive constants plog and ppower; each infrared be-
havior will be adapted to show the same decoupling prop-
erties for massive modes as displayed in (14) and (15). For
simplicity, we assume that this IR behavior does not de-
pend on the number of fermions. These running couplings
and the corresponding resulting instanton densities at van-
ishing external fields are shown in Fig. 7 in Appendix E.
The effective potential for non-vanishing σ and χ is
strongly influenced by fermion and gauge boson mass
effects, respectively. Hence, the effective potential is ex-
pected to behave differently in the various directions of the
σ, χ plane. For definiteness, let us investigate four cases:
(1) σ small, χ= 0; (2) σ→∞, χ= 0; (3) σ = 0, χ small and
(4) σ = 0, χ→∞.
The ρ integration can be performed analytically by split-

ting the integration domain into several intervals, each of
them dominated by a different effect. For case (1), for in-
stance, there is a UV regime (0, ρpert) where the running
coupling iswell approximatedbyone-loopperturbation the-
orywithout the influence ofmass thresholds. In the consecu-
tive interval, (ρpert,

c
σ
) (with c being some O(1) constant)

the gauge coupling is dominated by non-perturbative dy-
namics, but fermion masses still do not play an important
role. Finally, in the interval ( cσ ,∞) the fermions are heavy,
compared to the scale 1/ρ, and pure gluodynamics domi-
nates the running coupling. Neglecting logarithmic depen-
dencies on σ orχ, we find

Uinst(σ, χ)

∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A1σ
Nf +B1σ

4+2Ncppower , (1): σ small, χ= 0 ,

A2σ
4−β0 +B2σ

4
(
1−
β0
β′0

)

, (2): σ→∞, χ= 0 ,

A3χ
Nf +B3χ

4+
4Ncppower
2+ppower , (3): σ = 0, χ small ,

A4χ
4−β0 , (4): σ = 0, χ→∞ ,

(21)

where all terms with coefficients Ai arise from the per-
turbative interval ρ ∈ (0, ρpert), and those with coeffi-
cients Bi arise from the various non-perturbative intervals.
Of course, only theBi terms depend on the form of the run-
ning coupling specified in (20); in fact, B1 and B3 vanish
for the “perturbative” gauge coupling of (20). Further-
more, β0 =

11
3 Nc−

2
3Nf is the one-loop coefficient of the

β function with fermions, and β′0 =
11Nc
3 denotes the one-

loop coefficient for pure gluodynamics. Not surprisingly,
the logarithmically divergent and the fixed-point coupling
yield the same results on this level of accuracy; hence the
parameter plog of (20) does not enter (21).
ForNf > 4+2Ncppower, the small-σ and small-χ behav-

ior may significantly be modified compared to the pertur-
bative expectation σNf , χNf . Here the possible dependence
on the infrared behavior of the gauge coupling appears to
be important. However, this simply reflects the fact that
naive IR convergence in the ρ integration is lost forNf > 4,
as we have already noted before. In this case, the conver-
gence is now restored by a combination of the suppression
due to the finite fermion mass exp(−NfK(mρ)) and the

suppression from the gauge coupling
(
8π2

g2(ρ)

)2Nc
at the ex-

pense of a direct dependence on the IR behavior of the
gauge coupling.
In the large-field regime, the potential grows faster than

σ4, χ4 only if β0 < 0 which corresponds to theories without
asymptotic freedom. Conversely, for asymptotically free
theories, the instanton-induced potential will not dominate
over the non-anomalous part of the potential U0 which can
be expected to exhibit a σ4, χ4 growth for reasons of uni-
versality. In view of the caveat mentioned in the beginning
of this subsection, we interpret this result as a successful
self-consistency check of the instanton-gas approximation.
Furthermore, for Nc = Nf = 3 and fixed σ, the instanton
contribution vanishes by Uinst ∼ χ−5 for large χ. The in-
stanton potential is therefore stabilized in the χ direction.

4 Numerical analysis of the effective potential

Guided by the analytic knowledge obtained so far for
the effective potential, let us study our full result for the
instanton-induced effective potential Uinst(σ, χ) obtained
numerically from (19). For definiteness, we use – as an ex-
ample – a one-loop form for the gauge coupling modified
such that it approaches an IR fixed point at g2fix = 100 in
the absence of condensates; this is in the ball park of IR re-
sults from RG flow equations [32]. Our conclusions remain
similar for all other running couplings proposed in (20).
Let us first confirm the asymptotic behavior obtained

analytically above along the σ and χ axes. As is visible
in Fig. 4a, displaying U(σ, 0), the potential along the σ
axis is unbounded from below for σ→∞. In particular,
forNf =Nc = 3, the resulting asymptotics of (21), yielding

|U(σ, 0)| ∼ σ
8
11 , is confirmed. Let us stress that the over-

all sign of the potential is negative for positive σ, since
the integral in (19) is always positive and the prefactor
V (σ, 0) =−σ3 is negative. From this, we draw two conclu-
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Fig. 4. Sections of the instanton potential Uinst(σ, 0) a and Uinst(0, χ) b in units of ΛQCD. The different large-field behavior is
clearly visible: the potential in the positive σ direction goes to−∞, whereas it rapidly approaches 0 for large |χ|. Note the different

scales of the potential itself for the σ and the χ direction. (Both plots use Z
1/2
χ = 1/15 and a gauge coupling approaching an IR

fixed point g2fix = 100. The renormalization-scheme-dependent constant DS is scaled out.)

sions: first, the instanton potential favors chiral symmetry
breaking, but the value of the condensate is not determined
by the instanton potential alone (at least in our simple one-
instanton approximation). Second, the complete instanton
potential Uinst(σ, χ) cannot have a global minimum, since
there is a direction in which the potential always decreases.
Next we consider a pure χ field. Figure 4b shows that

the instanton potential becomes flat rather rapidly for
large χ, as expected from (21). Negative χ are clearly
preferred.3 From Fig. 4a, we can read off the location of
the minimum: χmin ∼ 4.26ΛQCD ∼ 1.4 GeV for ΛQCD =
330MeV. This results in an encouragingMg ∼ 350MeV.
Nevertheless, it is important to observe that the poten-

tial in the χ direction is rather shallow compared to the
σ direction, the relative height being ∼ 10−3. This is a dir-
ect consequence of the relative prefactors in the potential
V (σ, χ) of (13). The dependence of the absolute value of χ
on our remaining free parameter Zχ is strong, whereas it
remains weak forMg. This is in agreement with the expec-
tation that, in the octet direction, the threshold effect of
the gluon massMg is much stronger than that of the quark
masses ∼ χ. For our quantitative results, we use the value
Z
1/2
χ = 1/15 which is in the phenomenologically acceptable
range [19, 40].
Finally, let us study the complete potential depending

on both fields σ and χ. Even though we have already ob-
served that the instanton contribution alone does not have
a global minimum, it is nevertheless worthwhile to look for
a local one. Such a local minimum indeed exists at (σ, χ)≈
(−0.27,−4.2)ΛQCD with the absolute depth of the poten-
tial being U(σ, χ)|loc. min. ≈ −1.42DS ≈ 0.009 in units of
ΛQCD (and using DMS ≈ 6× 10

−3). Since this minimum
has a too small |σ| ∼ 90MeV and is extremely shallow, it

3 Let us stress that the relative sign of σ and χ is indeed
important, since it changes the parity of some particles in the
spectrum of the model (1). Moreover, owing to the U(1)A
anomaly, it is not clear whether the sign in the Yukawa cou-
plings can be rotated away by a chiral transformation.

is not physically acceptable. Any generic non-anomalous
contribution U0 is likely to remove this minimum.
Since the local minimum is not acceptable and a purely

instanton-induced global minimum does not exist, let us
redo our analysis with one additional assertion: we assume
that the non-anomalous contributionU0(σ, χ) to the effect-
ive potential supports scalar singlet condensation via spon-
taneous symmetry breaking for sufficiently strong gauge
coupling (in fact, this has been shown to happen generi-
cally in QCD-like theories in [34]). In order to introduce
as few parameters as possible, we simply assume that U0
fixes a non-zero value of σ, leaving the detailed form of U0
aside. Now, since U0 is of non-anomalous origin, its form re-
flects the full chiral symmetry (even though it can exhibit
a symmetry-breaking minimum), implying its invariance
under σ→−σ. Hence, U0 does not prefer a particular sign
of σ. By contrast, Uinst does prefer positive values of σ as
displayed in Fig. 4a.
The instanton potential for small positive σ is depicted

in Fig. 5a. We observe that the global minimum for χ is
non-vanishing only for very small values of σ. Beyond the
critical value of σcrit ≈ 0.128ΛQCD < 50MeV the global
minimum is at χ = 0. This holds, in particular, for re-
alistic values of σ = 1, . . . , 4ΛQCD, which is plotted in
Fig. 5b. For σ � ΛQCD the dominant feature of the χ de-
pendence of Uinst is simply the vanishing of Uinst for large
χ which results in a relative minimum at χ = 0. Fig-
ure 5b summarizes one of our main results, namely, that
the instanton-induced potential appears incapable of giv-
ing rise to an octet condensate in the present instanton-gas
approximation.
Let us study the potential also for negative fixed σ.

Even though positive values are clearly preferred by Uinst,
observation only constrains the modulus of σ to be in the
realistic range |σ| ∼ 1, . . . , 4. A negative sigma indeed al-
ways give rise to a global minimum at χ �= 0, i.e. is support-
ive of a color octet; see Fig. 6. However, for realistic values
of σ, the instanton-induced potential is extremely shallow
again, such that this minimum is likely to be washed out



H. Gies et al.: Do instantons like a colorful background? 1005

Fig. 5. Effective potential Uinst(σ, χ) for different fixed σ. a displays the cases of σ = 0, 0.06, 0.128, 0.20ΛQCD in green, black , red
and blue, respectively. We observe that for values of σ > σcrit ≈ 0.128ΛQCD (red curve) the trivial minimum in the χ direction
becomes the global minimum. b shows the potential for realistic values of σ = 1, 2, 4ΛQCD in red , green and blue, respectively
(descending order), clearly demonstrating the absence of an instanton-induced color octet condensate. The parameters are chosen
as in Fig. 4 and all numbers refer to units of ΛQCD

Fig. 6. Uinst(σ, χ) for negative fixed σ. In a, we choose σ = 0,−0.06,−0.12ΛQCD (green, red and blue). The global min-
imum then is always at non-vanishing (negative) χ. in b, we depict the behavior for somewhat more negative σ =
−0.1,−0.27,−0.44,−0.61ΛQCD (green, red , blue and black). After increasing up to σ ≈ −0.27ΛQCD (red curve) the minimum
in the χ direction becomes more and more shallow with decreasing σ. The parameters are chosen as in Fig. 4

by the non-anomalous part (unless the latter is either fine-
tuned or supports an octet condensate itself).

5 Conclusions

We have calculated the one-instanton contribution to the
effective potential in a background of classical bosonic
fields coupled to quarks and gluons. One field, σ, has the
structure of the typical singlet chiral condensate and the
other, χ, exhibits a color–flavor-locking structure, as con-
jectured for the scenario of spontaneous color symmetry
breaking in the vacuum. Beyond leading order in the back-
ground fields, we have included the effects of the quark
masses on the running gauge coupling and the quark de-

terminant. In addition, the color octet condensate works
as a Higgs field for the gluons, providing for an extra
χ-dependent contribution to the classical instanton ac-
tion. We work in a massive regulator scheme which makes
threshold behavior more transparent.
For the realistic case of Nf = 3 light quark flavors, the

instanton potential is unbounded from below for a pure
singlet chiral condensate, favoring a non-trivial value of
this condensate and chiral symmetry breaking. Although
there exists a local extremum with non-vanishing octet
contribution, it is rather shallow and thus likely to be
washed out by non-instanton effects. Moreover, this ex-
tremum has a nearly vanishing value for the chiral con-
densate, making it phenomenologically unacceptable. As
the potential is unbounded from below along the σ direc-
tion, a global minimum of the instanton potential alone
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is excluded. Other stabilizing effects are typically ex-
pected from the U(1)A-preserving sector. Therefore, we
have investigated if a color octet condensate is favored
at fixed singlet chiral condensate. For realistic positive
values of the chiral field σ ∼ 1ΛQCD, χ = 0 is the global
minimum in the color octet direction. For negative σ
with a similar absolute value, there exists a minimum
with non-vanishing octet condensate. However, this min-
imum is also unnaturally shallow and thus will presum-
ably be washed out by non-instanton effects. Moreover,
the negative sign of σ is disfavored by the instanton
contribution.
Analytic insight into the effective potential can be

gained from its asymptotic behavior for large background
fields. It is interesting to note that the behavior for very
large fields is inherently connected to asymptotic free-
dom. For instance, large color octet condensates lead to
a high-scale decoupling, such that any non-perturbative
IR behavior is screened; in this large-χ direction, the
flattening of the potential can directly be related to the
perturbative approach to asymptotic freedom. Another
extreme example is provided by the case where asymp-
totic freedom is lost, e.g., owing to too many fermion
species; in this case, the potential may go to −∞ faster
than the fourth power of the fields, preventing stabiliza-
tion by a renormalizable non-instanton potential for the
bosonic fields. On the other hand, we observe a strong qual-
itative dependence on the non-perturbative IR behavior
of the coupling only for very small fields and more than
four light fermion species: here, the increase of the instan-
ton amplitude depends strongly on the infrared details of
the gauge coupling and may be changed from the naive
σNf , χNf .
In conclusion, barring large higher-order, e.g., multi-

instanton, effects, we find that chiral symmetry breaking
is supported by instanton effects. On the other hand, the
issue of color octet condensation remains inconclusive. In
our approximation, we find no evidence that instantons fa-
vor a color condensation in the vacuum.

Appendix A: The one-instanton approximation
and the instanton gas

Here we recall the computation of the instanton-induced
effective action Γ within the dilute-gas approximation.
In a dilute and weakly interacting instanton gas, the
dominating contribution to the generating functional is
the one-instanton and one-anti-instanton contribution. It
reads

Z1 =−Ω(UI(σ, χ)+U
∗
I (σ, χ)) , (A.1)

where Ω denotes the 4-volume, and UI is the effective
potential corresponding to the product of functional de-
terminants of the fluctuating fields in this background.
The anti-instanton contributes with UAI(σ, χ) = U

∗
I (σ, χ).

Within the dilute-gas approximation, the contribution of
the |n|-instanton sector is given by Zn =

(Z1)
n

n! . This leads

to the full amplitude

Z =
∞∑

n=0

Zn =
∞∑

n=0

(Z1)
n

n!
= exp(Z1) , (A.2)

where we have normalized the zero-instanton amplitude
to one. To lowest order in the bosonic background fields,
this holds because we included the influence of the fields
(masses for the fermions) only for the zero modes. How-
ever, in the absence of gauge fields, the Dirac operator has
no zero modes. Beyond this approximation, this normal-
ization corresponds to a modification of the non-instanton
U(1)A-symmetric contribution to U(σ, χ). From (A.2), we
read off the effective action in the classical background
of σ, χ,

Γ =− lnZ =−Z1 , (A.3)

which serves as the starting point of our investigation in
the main text.

Appendix B: Different regularization schemes

In this appendix, we discuss how to switch between reg-
ularization schemes. We shall use a scheme which mani-
festly exhibits the decoupling of massivemodes. It has been
shown in [7] that topological effects persist within the RG
framework used in the present work. This applies, in par-
ticular, to the existence of zero modes [7]. Moreover, at
leading order one only has to take into account the explicit
mass or regulator dependence. This amounts to using the
well-known zero modes [1, 2].
For non-perturbative problems involving mass thresh-

old effects, as they are induced by the background fields
in our case, such schemes are highly advantageous. Follow-
ing [1, 2, 50], a change of the renormalization scheme can be
understood by comparing two integrals,

I1 =

∫
d4q

(2π)4
1

(q2+m2)2
, I2 =

∫
d4q

(2π)4
q4

(q2+m2)4
,

(B.1)

in the different regularization schemes. Here, I1 appears
in connection with the zero modes and I2 with non-zero
modes. Therefore, we can easily keep track of these terms.
For example, the Pauli–Villars scheme gives

IPV1 =

∫
d4q

(2π)4

[
1

(q2+m2)2
−

1
(
q2+Λ2PV

)2

]

=
1

(4π)2
(2 ln(ΛPV)−2 ln(m)) ,

IPV2 =

∫
d4q

(2π)4

[
q4

(q2+m2)4
−

q4
(
q2+Λ2PV

)4

]

=
1

(4π)2
(2 ln(ΛPV)−2 ln(m)) = I

PV
1 , (B.2)
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whereas we find in dimensional regularization

Idreg1 = µ4−n
∫
dnq

(2π)n
1

(q2+m2)2

=
1

(4π)2

[
2

4−n
+2 ln(µ)−2 ln(m)−γ

+ln(4π)+O(4−n)

]

= Idreg2 +
5

96π2
. (B.3)

Comparing (B.2) and (B.3), the substitutions for a change
from Pauli–Villars to dimensional regularization read

I1 : ln(ΛPV)→
1

4−n
+ln(µ)−

1

2
γ+
1

2
ln(4π) ,

I2 : ln(ΛPV)→
1

4−n
+ln(µ)−

1

2
γ+
1

2
ln(4π)−

5

12
.

(B.4)

Using (B.4), it is easy to check that, starting from (9)
and (11), we can obtain the corresponding result in dimen-
sional regularization as given, e.g., in [1, 2].
Both schemes discussed so far are mass independent.

This originates from the fact that for fixed cutoff µ or fixed
dimensionality 4−n, the integrals IPV and Idreg do not
vanish in the limit m→∞. A mass-dependent regular-
ization scheme should implement this decoupling: massive
modes should not contribute to physics below the mass
threshold. For m� µ the integrals I1 and I2 should be-
come small and vanish in the above limit µ fixed, m→∞.

This can be implemented by defining IRG1
!
= IRG2 with

IRG1 =

∫ Λ

0

dkk−1l

(
m2

k2

)

=
1

(4π)2

[
ln

(
1+
Λ2

m2

)
−
2m2Λ2+3Λ4

2(m2+Λ2)2

]
,

l(ω) =
1

(1+ω)3
. (B.5)

In fact, this is not an arbitrary definition, but one that
receives motivation from various sources. First, it is very
convenient to have I1 = I2, since, when changing from the
common Pauli–Villars scheme to our scheme it is not ne-
cessary to distinguish between the different contributions
from I1 and I2. The main reason, however, is the simple
form of the one-loop flow equation for the gauge coupling
in (14) which results from this choice. Finally, a deeper
reason for the choice is that it corresponds to a simplified
version of a typical functional RG scheme regularization
(for more details see, e.g. [37]). Indeed,

IRG1 =−

∫ Λ

0

dk

k

∫
d4q

(2π)4
d

dk
Rk(q

2)
1

(
q2+m2+Rk(q2)

)3

(B.6)

is a typical expression for I1 when one defines perturba-
tion theory from a flow equation with regulator function
Rk(q

2). In a consequent RG calculation several different
threshold functions similar to l(ω) appear. For simplicity

we put I1 = I2. This is not an approximation but simply
an implicit definition of the related regulator function Rk.
For computations beyond the present qualitative setting
we suggest using an optimized regulator [51, 52]

Rk(q
2) = (k2− q2)Θ

(
1−
q2

k2

)
(B.7)

and its upgrades suitable for momentum-dependent
approximations [25].
From (B.5), it is easy to find the relation between Pauli–

Villars regularization and our scheme:

ln(ΛPV)→ ln(m)+

∫ Λ

0

dk

k
l

(
m2

k2

)

=
1

2
ln(m2+Λ2)−

2m2Λ2+3Λ4

4(m2+Λ2)2
. (B.8)

We emphasize that (B.8) depends on the cutoff Λ as well
as on the mass m of the particle in question. For large m,
the mass acts similar to the cutoff Λ. This implements the
decoupling of heavy modes.
Finally, we exploit the freedom of redefining the coup-

ling constant at one-loop order, such that it absorbs part of
the finite changes discussed above,

8π2

g2
S̄
(ρ)
=
8π2

g2S(ρ)
+CSS̄ , (B.9)

modifying the perturbative expression for g2 only at order
g4. This is often used to simplify expressions, e.g., in the
transition from MS to MS, or to ensure direct compara-
bility between different schemes. We will use this freedom
below in Appendix C to facilitate comparisons between our
scheme and the MS scheme in which most results are given
in the literature.

Appendix C: Assembling
the instanton integral

In this appendix, we put together all the various pieces
of the instanton size ρ integral, taking care of our mass-
dependent regularization scheme. At fixed instanton size
and using Pauli–Villars regularization, the following func-
tions contribute to the renormalized integrand:

fcl = exp(−Scl) = exp

(
−
8π2

g2(µ)

)
, (C.1)

fnon-zero = exp

(
−
1

3
Nc ln(µρ)−α(1)

+
Nf

3
ln(µρ)+2Nfα

(
1

2

))
, (C.2)

fgauge =
4

ρ5

(
4π

g2(µ)

)2Nc
(µρ)4Nc , (C.3)

ffermion =
MNf

µNf
, (C.4)

N =
4

π2
π2(Nc−1)

(Nc−1)!(Nc−2)!
, (C.5)
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where MNf represents V (σ, χ) as defined in (11) and re-
duces to mNf if the bosonic sources only lead to a simple
mass termm.
Here fcl is the contribution from the classical action,

fnon-zero summarizes all effects from the non-zero modes,
fgauge is the contribution from the gauge and ffermion from
the fermion zero modes. N collects some normalization
factors and the group averaging. Combining all these con-
tributions, we find the well-known result

N
∏

x

fx =DPVρ
−5+Nf

(
8π2

g2(µ)

)

× exp

(
−
8π2

g2(µ)
+β0 ln(µρ)

)

=DPVρ
−5+Nf

(
8π2

g2(µ)

)
exp

(
−
8π2

g2PV(ρ)

)
,

(C.6)

where we have used the one-loop relation between g2(µ)
and g2(ρ) in the last step, and D is given in the Pauli–
Villars scheme as

DPV = exp

(
−α(1)−2(Nc−2)α

(
1

2

)
+2Nfα

(
1

2

))

= 1.1506 ,

α

(
1

2

)
= 2R−

1

6
ln(2)−

17

72
= 0.1459 ,

α(1) = 8R=
1

3
ln(2)−

16

9
= 0.4433 ,

R=
1

12
(ln(2π)+γ)+

1

2π2

∞∑

s=2

ln(s)

s2

= 0.2488 . (C.7)

We point out that we still have g2(µ) in the prefactor of
the exponential, which is an artifact of the one-loop calcu-
lation. This will be rectified by higher-loop orders where
the ‘bare’ g2(µ) in the prefactor is replaced by its running
counterpart evaluated at the scale ρ (also at one-loop order
less than the corresponding one in the exponential). Since
replacing g2(µ)→ g2(ρ) is the main effect of higher-loop
orders (apart from possible changes in the factor D), we
account for these prefactors as well as for the term in the
exponential by hand without further calculation. In this
way, we already arrive at (9) and (12) (at least naively in
the Pauli–Villars scheme),

N
∏

x

=DPVρ
−5+Nf

(
8π2

g2PV(ρ)

)
exp

(
−
8π2

g2PV(ρ)

)
. (C.8)

The final task now is to change from the mass-independent
Pauli–Villars scheme to our mass-dependent RG scheme.
Starting from (C.8), this is immediately done using (B.8),
resulting in an additional multiplicative factor,

RG(Mgρ,mfρ) = exp

(
11

3
NcH(Mgρ)−

2

3
NfH(mfρ)

)
,

H(x) =
1

2
ln(1+x2)−

3+2x2

4(1+x2)2
, (C.9)

whereMg andmf are the gauge boson and fermion masses,
respectively.
Finally, we make a last change and define a modified

RG scheme via (B.9) with

CRGRG =− ln

(
RG(0, 0)DPV
DMS

)
, (C.10)

where DMS is defined in (10). By construction, this estab-
lishes that our coupling constant is equal to the one-loop
MS coupling, also including the constant in the instanton
integral. But most importantly, we have not absorbed the
mass-dependent contributions. Therefore, our scheme is
still mass-dependent and provides for decoupling of heavy
modes.

Appendix D: Calculation
of the zero-mode part

The Dirac operator D/ in the background of an instanton
hasNf = 3 zero modes, being flavor copies of a fundamental
zero mode. We show that in leading order

ζz(ρ, σ, χ) = 〈det flavor〈ψ0(a, i)|Mψ,ij|ψ0(b, j)〉〉SU(3)

=:−ρNfV (σ, χ) , (D.1)

where

(Mψ,ij)αβ = ((−D/ ij)αβ+(σδij+χij)δαβ) , (D.2)

with mass matrix σ+χ, where χ introduces color–flavor
mixing. The eigenvalues ofMψ are λn(σ, χ) with eigenfunc-
tions ψn(σ, χ). The color–flavor mixing term χ does not
commute with D/ , and the ψn are not eigenfunctions of D/
for χ �= 0, leaving (D.1) a non-trivial identity. The mass
matrix reads more explicitly

(σabδij+χab,ij)δαβ

=

[
σδabδij+

1
√
6
χ

(
δaiδbj−

1

3
δabδij

)]
δαβ ,

(D.3)

where we have already absorbed the Yukawa couplings into
the fields and used the color–flavor structure (2) for the
condensates. For clarity we have explicitly written out the
spin indices α, β. Using the group averages in (D.1) [3, 53],
we arrive at

ζz(ρ, σ, χ) = ρ
Nf

(
σ+

1

6
√
6
χ

)2(
σ−

1

3
√
6
χ

)
. (D.4)

It is left to prove (D.1). With trivial flavor structure,
χij = 0, the determinant factorizes trivially,

detMψ = ζz(ρ, σ, χ) det
′Mψ , (D.5)

where det ′ stands for the determinant on the non-zero
mode space. For non-vanishing χ (D.5) holds up to terms
χNf . This is shown in an expansion about the determinant
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of −D/ +σ with eigenvalues λn(σ, 0) = λn(0, 0)+σ and
eigenfunctions ψ(σ, 0) = ψn(0, 0). We label the zero modes
ofD/ with ψn0 , n0 = 1, 2, 3 with eigenvalues λn0(s= 0) = σ.
There is no term linear in χ as the only invariant is
trflavorχ = 0. The quadratic term has the structure
σu2(σ)χ

2 with finite limit u(0). It is evaluated as

1

2
∂2s det (−D/ +σ+ sχ)|s=0 =

1

2

∑

n

(
∂2sλn

) ∏

m�=n

λm

+
∑

m<n

(∂sλn)(∂sλm)
∏

l�=n,m

λl ,

(D.6)

where the limit s = 0 on the right-hand side of (D.6) is
understood. The term proportional to ∂2sλn has the coef-
ficient

∏
m�=n λm containing at least two of the eigenval-

ues λn0(s = 0) = σ of the zero modes ψn0 . Hence it only
contributes to sub-leading terms like ρσ2χ2. The term pro-
portional to (∂sλ)

2 has, apart from sub-leading terms, one
contribution proportional to

∏
l�=n0,m0

λl removing two
zero modes from the product. Thus we have

u2(σ)σ
Nf−2χ2 = σNf−2

∑

m0<n0

(∂sλn0)(∂sλm0) det
′Mψ

+O(σ2χ2) , (D.7)

where det ′Mψ =
∏′
l λl, and the primed product involves

only the non-zero eigenvalues of D/ . The s derivatives in
(D.7) follow:

∂sλn(s= 0) = ∂s〈ψn|(−D/ +σ+ sχ)|ψn〉

= 〈ψn|χ|ψn〉+λn∂s〈ψn|ψn〉= 〈ψn|χ|ψn〉 ,
(D.8)

where we have used 〈∂sψn|(−D/ + σ)|ψn〉 =
〈∂sψn|ψn〉λn and 〈ψn|(−D/ +σ)|∂sψn〉= λn〈ψn|∂sψn〉. We

Fig. 7. Instanton density b for various types of infrared behavior for the gauge coupling a. Red : g ∼ const., green: g ∼ ln(ρ), blue:
g ∼ ρ2, black : one loop behavior with g =∞ for 1ρ <ΛQCD. Strong non-perturbative behavior is modeled to set in at roughly g

2 ≈
30. We note that the integral over the instanton size remains finite. More quantitatively, this holds if the plotted quantity in b
vanishes faster than 1ρε with ε > 0 in the infrared. Most importantly, the constant ζ occurring in our lowest order approximation
to the effective potential, (12), remains a finite number

arrive at

u2(0)χ
2 =

∑

m0<n0

〈ψn0 |χ|ψn0〉〈ψm0 |χ|ψm0〉det
′Mψ.

(D.9)

Equation (D.9) extends to the general un(0)χ
n with n ≤

Nf. We are specifically interested in Nf = 3 with the re-
maining cubic term u3(σ)σ

Nf−3χ3 = u3(σ)χ
3, in leading

order,

u3(0)χ
3 =
(∏

n0

〈ψn0 |χ|ψn0〉
)
det ′Mψ . (D.10)

This proves (D.1). We can also directly use (D.9)
and (D.10) to compute the χ2 and χ3 coefficients as group
averages 〈u2〉SU(3), 〈u3〉SU(3), with the help of [53]. We
arrive at

3

χ2

〈
2∏

n0=1

〈ψn0 |χ|ψn0〉

〉

SU(3)

=
1

72
,

1

χ3

〈
3∏

n0=1

〈ψn0 |χ|ψn0〉

〉

SU(3)

=
1

648
√
6
, (D.11)

leading to (12).

Appendix E: IR running coupling effects
in the lowest-order approximation

Here we demonstrate that the qualitative features of the
instanton-induced effective potential to lowest order in the
scalar condensates is largely independent of the behav-
ior of the running coupling. This can be deduced from
a study of the ρ integration in (12). For constant g2(ρ) = g2

and Nf < 4, the ρ integral is infrared (ρ→∞) conver-
gent, but it has a (naive) UV divergence. The one-loop
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running removes this UV divergence, because of asymp-
totic freedom. Then the integration kernel behaves as ∼
ρ
11
3 Nc+

1
3Nf−5(ln(ρ))2Nc for small ρ, rendering the integral

convergent in this regime. In the infrared, the situation is
less clear, since one-loop running is certainly not a valid
approximation for the gauge coupling. Nevertheless, the re-
strictions on the behavior of g2(ρ) for ρ→∞ are rather
mild. Indeed, for positive and well-defined g2(ρ) there are
no restrictions at all for Nf < 4 (massless flavors). We can
even allow for a diverging coupling at a finite infrared
scale ρdiv. In this case, it is reasonable to assume that the
coupling remains infinite for even larger distance scales,
such that the integrand remains exactly zero for all ρ >
ρdiv. In Fig. 7 we plot the integrand for running couplings
with different infrared behavior. It is our main conclusion
that all reasonable forms for the running coupling in the
infrared imply a finite constant ζ in (12).
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